Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 923: 171348, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438046

ABSTRACT

We report for the first-time higher zinc (Zn) solubilization efficiency and plant growth promotion by an entomopathogenic fungus (EPF), Metarhizium pingshaense IISR-EPF-14, which was earlier isolated from Conogethes punctiferalis, a pest of global importance. The Zn solubilizing efficiency of the fungus varied depending on the type of insoluble source of Zn used, which was observed to be 1.6 times higher in Zn3(PO4)2-amended media compared to ZnO media. In liquid media, there was a 6.2-fold increase in available Zn in ZnO-amended media, whereas a 20.2-fold increase in available Zn was recorded in Zn3(PO4)2 medium. We ascribe the production of various organic acids such as gluconic, keto-gluconic, oxalic, tartaric, malonic, succinic and formic acids, which in general, interact with insoluble Zn sources and make them soluble by forming metal cations and displacing anions as the major mechanism for Zn solubilization by M. pingshaense. However, the type and amount of organic acid produced in the media varied depending on the source of Zn used and the incubation period. Application of the fungus alone and in combination with insoluble Zn sources enhanced various plant growth parameters in rice and cardamom plants. Moreover, the uptake of Zn in rice plants was enhanced up to ~2.5-fold by fungal application. The fungus also exhibited various other plant growth-promoting traits, such as production of Indole-3-acetic acid, ammonia, siderophores, solubilization of mineral phosphate, and production of hydrolytic enzymes such as α-amylase, protease, and pectinase. Hence, apart from its use as a biological control agent, M. pingshaense has the potential to be used as a bio-fortifier to enhance the solubilization and uptake of Zn from nutrient poor soils under field conditions. Our findings shed light on the broader ecological role played by this fungus and widen its scope for utilization in sustainable agriculture.


Subject(s)
Metarhizium , Zinc Oxide , Zinc , Formates , Fungi , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...